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Abstract. A formalism for the stopping power of atomic clusters moving in an electron gas
at finite temperature is presented. Calculations for diatomic, triatomic and larger clusters
are performed, for cluster velocities smaller than the Fermi velocity of the target electrons.
The dependence of the cluster stopping power on cluster orientation is more significant for
small clusters at low temperatures.

The interference effects on the stopping power of large clusters are described in terms of
the pair correlation function of the cluster components. Specific results are given for clusters
of hydrogen and water molecules. We obtain an enhancement of the cluster stopping power,
which varies with temperature due to changes in the screening conditions. Forlarge molecular
clusters the intermolecular vicinage function is negative, and atlow temperatures diminishes
the stopping power enhancement due to intramolecular contributions.

1. Introduction

It has been shown, both theoretically and experimentally, that the energy lost per
particle and per travelled path length for a cluster of ions moving in a solid target shows
important differences—usually called vicinage effects—with respect to the energy loss
of the separated ions [1-5]. The origin of this effect is the interference in the electronic
excitations of the target due to the correlated motion of the penetrating ions.

First studies of the vicinage effect on cluster energy loss, based on simple models,
considered the case of high cluster velocities [1], where the main contribution to the
vicinage effect is plasmon excitation. Using the random-phase approximation (RPA), the
role of single-electron excitations was later included to describe the vicinage effect for
low cluster velocities [2]. Experimental results (3, 4] at various energy ranges show good
agreement with theoretical predictions based on the rea dielectric function.

However, the physics of the interaction of a large cluster with matter is still not well
understood [6-8]. Current research on inertial confinement fusion using jon beams
[9, 10], as well as recent beam target experiments with large molecular clusters {7], has
created new interest in the evaluation of correlation effects in the stopping power of ion
clusters in solid targets under various conditions of densities and temperatures.
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Here, we present a description of the vicinage effects in the stopping power of slow
molecular clusters. The formulation extends the calculation of energy losses in a dense
electron gas, through a temperature-dependent dielectric function which also includes
guantum-mechanical (partial degeneracy) effects. We evaluate the magnitude of the
vicinage effect on the energy loss in dense media, for small clusters and for relatively
large clusters containing several hundred molecules.

The formulation of the cluster stopping power is briefly reviewed in section 2, and in
the following sections it is applied to several cases of interest for slow clusters in cold
and heated solids, and plasmas. First, we study the dependence of the vicinage effect on
cluster size and angular orientation, for diatomic and triatomic clusters. In the cage
of large molecular clusters, we describe the interference effects in terms of the pair
correlation functions, and analyse the cases of homonuclear and heteronuclear clusters.
Asillustrative examples, we calculate the vicinage effects onthe energy loss for molecular
clusters of hydrogen and water. We evaluate the contributions of intramolecular and
intermolecular interference terms to the cluster energy loss.

2. Cluster stopping power

Consider a cluster consisting of N ions of atomic charge Z; and relative positions r;,
figure 1(a). A general expression for the energy loss per unit path-length of such a cluster
penetrating a medium with velocity v, is given by [2]

N N
Sa = [2 Z3 + 2 Z Zi(ry, '9'?)} 5 ?
i=1 i#f

where S, is the proton stopping power, which, in the dielectric approximation, is related
to the dielectric function of the medium {4, w) in the usual way,

1 (kD ( -1 )
sp_wvjdk = im o @)

and I(r, ¥#) is an interference—or vicinage—function given by [2]

1 koo, [ -1
0, 9) = s f Pk Im (E(k,w)) cos(k - r) @)

where the frequency @ is evaluated at w = k- v. The interference functions I(r, %)
depend on the angular orientation # of the internuclear vector r, relative to the direction
of motion v, asillustrated in figure 1{e). Atomic units will be used throughout this paper.

The vicinage functions measure the interference effects on the stopping power of a
cluster. For large internuclear distances, r-» o, the vicinage functions vanish,
I(=, #)— 0, and the stopping power in (1) becomes the uncorrelated stopping of N
independent charged particles,

Sindep = (é Z?) Sp. (4a)

In the opposite limit of vanishing separation between the cluster components,
1(0, 8) = 1, and (1) yields the stopping of a total charge 2, Z;, namely
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Performing the integration over the azimuthal angle, the proton stopping power and
the interference function in {2) and (3), become
2 Jvr ﬁ kv

P32
JT:kaD

dw o Im (S (k‘fm)) s)

and

Cor= kv
Ir, ) = J?%S;J; i—k : dow @ Im (e(k, w)) cos (E:)—a) Jo[b(k? — w2/02)1/2] (6)

where a = rcos &, & = rsin ¢ (cf figure 1(b)), and J,is the zero order Bessel function.
For random orjentation of the internuclear axis, one performs an angular average of
the vicinage function in (3) or (6) and finds
2 J‘” dk sin(kr) [
xS, 4, k  kr

U, ) = I(7) = dwwlm( 1 ) )

0 s(k, @)

To complete the calculations, the loss function Im(—1/¢) has to be specified. Several
approximate forms of the loss function are available with different ranges of validity. In
this paper we are particularly interested in the case of slow ion clusters, i.e. cluster-
velocities smaller than the Fermi velocity of the target electrons (v < vg). The loss
function of an electron gas at finite temperature T is then well described, for all degrees
of plasma degeneracy, by [11]

Im(—1/e(k, )) = [2ke/(k? + k3)*][1 + exp(k®/8kp T —~ u/ka T)] 7. (8)

Here, k5 is Boltzmann's constant, u is the chemical potential and &, is a temperature-
dependent screening constant given by

k2 = ke /(1 + $22)12 9)

in terms of the Thomas—Fermi wave vector, k3¢ = 4kg/m, and the electron gas tem-
perature, T = kgT/Ep, measured in units of the Fermi energy of the electron gas. The
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loss function in (8) represents the oscillator-strength distribution corresponding to one-
electron excitations in dense quantum plasmas.

The electron gas density is described by the one-electron radius r,. In all the cal-
culations presented below we use r, = 2au, a typical value for conduction electron
densities in solids, so that £r = 0.46 au,

In the following section we shall consider in some detail low-velocity stopping power
calculations for the simplest clusters of two and three atoms. A discussion of large
molecular clusters will follow in section 4, and, in particular, clusters of hydrogen and
water molecules.

3. Small clusters

3.1, Diatornic clusters

The stopping power for two correlated charges Z, and Z, (figure 1(b)), separated by an
internuclear distance r, is simply given by

5§ =[(Z7 + Z3) + 22, Z,4(r, D)]S,. (10)

The ratio between the correlated and the uncorrelated stopping power, (4a), is
refated to the interference function

y? =8P /SR = 1 + 22, 2,/(Z3 + ZHU(r, B). (11)

Then, to illustrate the vicinage effects on the energy loss, we study the angular and
radial dependence of f as a function of target temperature.

We show in figure 2 the dependence of the vicinage function I on the cluster size r,
for T = kgT/Ep =0, 1 and 10, and for three cluster orientations, corresponding to
collinear (# = 0°), bisecting (¥ = 45°), and perpendicular (# = 90°) orientations of the
internuclear axis with respect to the velocity vector v.

The single-atom limit ({ — 1 for r — 0) has been discussed in section 2 above. As
figure 2 illusirates, the main effect of the target temperature is to smooth out the radial
dependence of {(r, &) for all cluster orientations. This effect is more notorious for small
angles of orientation of the cluster, i.e. collinear penetration of the cluster. Actually,
the effect of temperature is different depending on the internuclear distance r in the
dicluster. Thus, for relatively large diclusters (r & 1 au) the interference function ftends
to increase with temperature 7, while for small diclusters (r <1 au) / decreases with
increasing 7. In the range of ordinary equilibrium distances in molecules (» =~ 1.5-2 au)
the function / depends rather weakly on temperature.

The average of the vicinage function over cluster orientation, (7), is also shown in
figure 2. The effects of electron gas temperature and internuclear separation just dis-
cussed are smoothed out, but one still finds significant correlation effects. The apparently
small increase of the angular-averaged vicinage function I(r) with target temperature,
seen in figure 2 for large internuclear separations (r > 4 au), has, in fact, important
consequences in the case of clusters containing a large number of ions, as will be seen in
section 4.

3.2. Trigtomic clusters

Some experimental results are available for beams consisting of homonuclear triatomic
molecules [1, 4], i.e. clusters of three identical charges (Z, = Z, = Z;) and with the
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Figure 2. Intetference function I(r, #) versus dia-
tomic cluster size r, for three cluster orientations
#, and angular average {/}, see (7). The parameter
in each figure, is the reduced temperature, t =
kgT/Eg, inunits of the Fermi energy Eg. The scale
on the right shows the ratio y™ of the cluster
stopping power, to that of non-correlated
particles, for homonuclear diclusters (Z, = Z,).
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Figure 3. Cluster-size dependence of the tri-
atomic-cluster stopping ratio, y™, see (13), for
three temperatures T = kg7/Er, and for two
orientations of the cluster plane with respect tothe
velocity v (see figures 1{c}, (d)), correspondingto
parallel orientation (dotted curve), perpendicular
orientation (broken curve), and spherical average
for random orientation (full curve).

same internuclear distance, r; = r, figures 1(c), (d). The cluster stopping power is now

given by

S =Z3 + 2(I o + I3 + I)]S, (12)

where I; = I(r, #;). In comparison with the diatomic cluster, the vicinage effect may be
amplified due to the presence of more interference terms.
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Asin (11), we introduce the stopping power ratio for the cluster

$®
y® = SOm 14+ 80+ 15+ In) (13)

indep

where S5\, = 3Z3S,, see (4a). The ratio y® can vary between the limits @ = 1, for
r— =, and ¥ = 3, forr— 0.

To illustrate the angular and size dependence of the triatomic cluster stopping we
shall consider the cases where the cluster plane is either parallel or perpendicular to the
velocity o, figures 1{c), (d}.

It can be shown that for paralle] orientation of the cluster plane with respect to its
velocity, figure 1(c), the stopping ratio y™ does not depend on the angular orientation
y of the cluster within this plane. This result follows from an analytical integration in e
of the low-velocity interference function I(r, #), using (6) and (8), and then summing
for the three ¥, values (#; = ¢ + 30°, ¢ + 90°, y + 150°).

Weshowin ﬁgure 3 the stopping ratio ¥ for parallel and perpendicular orientations
of the cluster plane, as well as the spherical angular average. The cluster effect is
illustrated for three temperatures, kgT/Ep = 0, 1 and 10,

In comparison with the results in figure 2 for diatomic clusters, we find here a smaller
angular dependence. and an enhancement of the vicinage effect due to the larger number
of interference terms, cf (10) and (12). This fact may be useful for further experimental
studies of the vicinage effect.

4. Large clusters

4.1. Homonuclear clusters

The general formulation given in section 2 can be cast in a form more appropriate to
discuss the energy loss of a cluster containing a large number of ions. The stopping power
of each ion in the cluster will be influenced by interference with all the other ions. In
view of (1}, we write the modified stopping power for each ion in the cluster in the
following way

St =125 + 28, | rgu IS, (14

where we have introduced the effective ion charge Z} , the average ion density n, in the
cluster, and the so-called pair correlation function g,,(r) between two cluster ions

[12, 13].
The total stopping power of the cluster will now be simply given by
Sa =N, St (13)

where N, is the total number of jons in the cluster.
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Using (8) we write the expressions of §, and I(r), see (5) and (7), as

So =40 0 SIAC) (16)

and
4p sm(kr)

where f(k) is the temperature-dependent screening function [11]

fsle) = [&*/(R? + K2)*1[1 + exp(k® [8kg T = u/ks T)] ™. (18)
Next we introduce the cluster vicinage function G,

Gy =m jd3rg“(r)f(r) (19)
so that the cluster stopping power takes the simple form

Sa=NZPS,(1+ Gy). (20)

The factor before the parenthesis in (20) is the stopping of N, uncorrelated atomic
ions, see (4a). Thus, the reduced cluster stopping ratio becomes

Y= Scl/Sindep =1+Gy (21)

which, as expected, is independent of the value of the effective charge.
Let usfirst calculate the vicinage effects using simple models for the cluster structure.
Take the following model for the pair-correlation function,

1 forr, <r<r,
gnu(= { ) (22)
0 otherwise.

In figure 4 we show the calculated values of y versus cluster radius r,, for some values
of the inner radius r,, and for three temperatures, T = kg7/Ez =0, 1 and 10. The
oscillations observed for this simple model of g, and for T = 0 are due to the sharp cut-
off at k = 2kr introduced by the energy loss function (18). With increasing temperature
these oscillations are damped out, and the magnitude of the interference effect shows a
maximum that increases and shifts to larger 7, values. The qualitative shape of the y(r,)
curves is the same for the two inner radii shown, and the peak position depends only on
¥a.

It can be seen that the enhancement and shift of the stopping ratio is linked to the
change in the screening conditions. In fact, the screening parameter & in (18) has the
meaning of a reciprocal screening length A, = 1/k,. According to (9) the screening length
increases with T, so that the stopping-power enhancement in figure 4 reaches amaximum
value when kg, = 7.

As an application to large homonuclear clusters, we consider the case of clusters of
molecular hydrogen. The pair correlation function of these clusters can be approximated
[12] by (i) a peak (delta-like distribution) at r,, = 0.74 A (corresponding to the normal
internuclear distance in H, molecules), and (ii) a square-function model, asin (22), with
an exclusion volume for 7 < r,, with r, = 1.9 A (half the nearest-neighbour distance in
solid hydrogen) [12]. These model parameters provide an approximate description that
illustrates the main effects expected in the stopping ratio y.
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nuclear clusters, versus cluster size r,, for a
*square’ g(r) model, see (22), assuming a particle
density n = 10 2auinthe cluster. Calculations are
shown for two inner cluster radii, r, = 1 and 3 au,
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Figure 5. Temperature dependence of the clusier
stopping-power ratio v, for large H, clusters con-
taining N molecules, with ¥ = 104 and 354, as
indicated. The figure shows the contributions to
the vicinage effect due to the intramolecular and
intermolecular terms, as well as the total value of

10. The upper scale shows the number of particles ¥.
in the cluster.

In figure 5 we show the calculated values of y for molecular hydrogen clusters. The
chain curve gives the contribution to y of the intramolecular interference term (namely,
the vicinage effect due to the two protons in the H; molecule). The broken curves show
the intermolecular vicinage effect, integrated according to (19), for two cluster radii,
r, = 20 and 30 au. The number of molecules is N,/2 = 104 and 354 respectively, The full
curves in figure 5 are the total stopping ratio y of each cluster.

As figure 5 shows, the intramolecular term gives a stopping enhancement of about
50% which does not vary much with temperature. The intermolecular vicinage term ¢,
remains negative (y < 1) through a wide range of temperatures, and then increases, so
that ¥ becomes larger than 1 at very high temperatures. This increase of the stopping
ratio y, and its dependence with cluster size, agrees with the stopping enhancement
effect already discussed in relation with figure 4. The weak temperature dependence of
the intramolecular term agrees with the results of section 3 (cf figure 2), for diclusters
with internuclear separations in the range of ordinary equilibrium distances in molecules
{r=1.5-2au).

Therefore, at low temperatures, the cluster components interfere negatively, and
the total stopping ratio is smaller than the intramolecular contribution alone.

The increase of y at very high temperatures is an indication that the particles in the
cluster start to behave coherently, so that asymptotically the limit of (45) would be
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reached. In this limit §p = (N,Z,)%S,, which is to be compared with Sj.4, = N;Z}S$,,
and thus v — N,;.

In fact, the variation of the screening constant &; with temperature is so gradual that
in these calculations y never reaches values much larger than 1.

4.2. Heteronuclear clusters

Let us consider now a large cluster containing two different types of atomic ions, with
effective charges Z} and Z%, and let g,,(7), g22(r) and g,5(r) = g4,(r) denote the cor-
responding pair-correlation functions that describe the internal structure of the cluster
[13]. The average density for each kind of particle in the cluster will be denoted by n,
and n, respectively.

By aslight generalization of the formulation given above, we can write the modified
stopping power for each ion, of type 1 and 2 respectively, as follows

st = |28 + z0m [ Pren ) + 21 28m; [ g 5, @)
8% = [23‘2 + Z¥n, fd3rgn(r)l(r) + 2% Z%}n, fd3rg21(r)1(r)] S, (23"
These expressions can be cast in the simple form
St =(Z¥ + ZPGy + ZE Z3 G )S, 24)
§3 = (23 + Z3°Gn + Z3 Z Gy)S, 24')
where
4p [*dk
Gy =505 | THWR® 25)
and
sin(kr ..
g =n, [@rg, =D ij=1,2) )

Finally, if ¥, = x; N, and NV, = x,N, are the total numbers of ions of type 1 and 2 in
the cluster (with x, and x, being the number of atoms 1 and 2 in the molecule, and N,
the total number of molecules in the cluster), the cluster stopping power will be given
by

Sq =N ST + N,S% 27
while the corresponding stopping power of the separate atomic ions is
Singep = (N1ZF2 + N, Z57)S,. (28)
It is usefui for this analysis to define the ratio of the effective charges
£=23/Z¢ (29)
so that we can write the stopping ratio y in terms of ¢ in the form
Y= 8a/Sintep = [IN1(1+ Gy + {G12) + N2 L(E+ LG o + G )l/(Ny + N, £2). (30)

In the following we shall apply this description to the calculation of the stopping
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Figure 6. Cluster stopping-power ratio y versus
reduced temperature kg T/ Er, for a cluster of 200
H,0 molecules. The parameter § on the curvesis
the ratio of the effective ¢harge of O 1o that of
H. The case { = 1.55 corresponds to the actual
effective-charge ratio for slow oxygen and hydro-
gen [14]; the results for £ = 0 (only H-H terms)
and §— = (only O-O terms) correspond to the
limiting cases where the effect of one of the atoms
is neglected. The figure shows: (a) the intra-
molecular contributions; () the intermolecular
0 A 5 I 10 contributions; and (c) the total energy-loss ratio

keT 1, y from (30).

power of large clusters of H,O or ;O molecules, a case which is of interest due to recent
experimental developments with large clusters of water and heavy-water ions [3, 6].

We have used the correlation functions g(r) for the pairs H-H, H-O and O-O,
corresponding to the structure of water, as determined experimentally [13]. For the
present estimate, minor isotopic differences in g;(r) between H,O and D,O can be safely
neglected.

Previous calculations by Echenique er al [14] provide accurate values of the effective
charges of slow ions in solids. In particular, the calculated effective-charge ratio between
OandHforr, = 2auis { = Z} /Z} = 1.55. For comparison it is also useful to consider
the limiting cases £ =0 (only H-H vicinage effects) and {— o (only O-O vicinage
effects).

A word of caution is in order here. All the results reported in the present paper are
based on the application of the linear response theory towards the evaluation of the
stopping power of slow clusters. Itis well known [14] that non-linear effects are important
in the stopping of slow ions of large atomic number. The use of an effective atomic
charge indicated above should then be taken on a qualitative basis.

We show in figure 6 the calculated stopping ratios as a function of the target electron
temperature, for the three selected values of ¢, and for a cluster containing 200 water
molecules (corresponding to a cluster size =21 au).

As in the case of molecular-hydrogen clusters, we have separated, for each value of
£, three contributions to the stopping power ratio in the following way.

(i) Intramolecular terms, figure 6(a), whichinclude one H-H interference term (with
internuclear distance ryy = 1.54 A), and two H-O interference terms (with ryo =
0.96 A), corresponding to the normal equilibrium distances in the H,O molecule.

(i) Intermolecular terms, figure 6(b), as obtained from the integration of the vicinage
functions, (25) and (26), using the experimental values for the pair-correlation functions
in water [13].
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(iii) Total stopping power ratios ¥, see (30), figure 6(c).

In analysing figure 6 one can draw the same qualitative conclusions discussed above
for the stopping of large homonuclear clusters. The intermolecular terms give the main
contribution to the total stopping power at high temperatures. The intramolecuiar
effects are more important at lJow temperatures, but remain essentially constant with 7.
We also find here a partial cancellation of inter- and intramolecular terms at low
temperature, where the intermolecular vicinage function becomes negative.

In the limit £ — 0 (only H-H interference terms), the intramolecular curve in figure
6(a) can be traced back to the corresponding results in figure 2 for random dicluster
alignment. In comparing the limiting cases of purely homonuclear vicinage effects
in figures 6(b) and 6(c) (i.e. £ =0 and =), one finds a cross-over of the calculated
intermolecular stopping ratio as a function of 7. This reflects the details of the cor-
responding pair-correlation functions.

5. Discussion and conclusions

The calculations presented here provide the first estimates of the vicinage effects on
cluster stopping power for large molecular clusters. We have also considered in some
detail the dependence of the vicinage effects on cluster size and orientation, on cluster
structure, and on the target electron temperature.

The study of diatomic and triatomic clusters provides basic elements to understand
the stopping of large clusters. The dependence of the cluster stopping power on inter-
particle orientation is very strong for diatomic clusters at low temperatures, but for the
larger triatomic clusters the angular dependence becomes lower. Therefore, the angular
average of the interference function I{r), cf (7), provides 2 reasonable approximation
to estimate the effect of larger clusters.

In the analysis of the vicinage effect for large moiecular clusters, it is useful to
distinguish between the intra- and intermolecular interference effects. The first are
easily understood, based on the results for di- and triclusters. In the range of ordinary
internuclear distances in molecules, the intramolecular interference terms give rise to
an enhancement of up to 50% in the cluster stopping power.

The intermolecular vicinage effects can be formulated in terms of the pair-correlation
functions g,(r) of the cluster components. In the range of normal intermolecular dis-
tances and target temperatures, this vicinage effect is found to be negative {due to the
negative values of the interference function I{r)). Hence, the intermolecular vicinage
effect decreases the stopping-power enhancement due to the intramolecular terms; this
compensating effect is mostly important at low temperatures, but applies in a wide range
of kg T/E;. Finally, for rather high temperatures (ks T/Er > 1) all the-particles in the
cluster start to behave coherently, and the stopping ratio y increases to values well above
1. The cluster stopping power shows then the largest enhancement effect. This occurs
when the screening distance in the medium A, increases with temperature to values such
that A, ~ cluster size.

Early experiments of cluster interaction with solids considered the case of small
(diatomic and triatomic) ion clusters, in a range of energies where electronic excitation
provides the dominant energy loss mechanism [1-5]. More recent experiments with
large clusters [6, 7] have created new interest in possible applications to fusion studies.
So far these experiments have considered very slow clusters, v <€ vf, where the effects
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of elastic collisions {15] may be quite important. It is not the purpose of this paper to
discuss the many complicated processes that shouid be considered, even for a qualitative
discussion of such experimental results [7, 8]. However, due to the drastic increase in
the fusion cross section with velocity (cf figure 2 in reference 16), and considering the
extremely low fusion yields so far reported [7], it seems worthwhile to investigate the
range of higher cluster velocities (but still v < pg). In this energy range, electronic
stopping constitutes the dominant energy loss mechanism, and the present calculation
of vicinage effects provides a first estimate of the expected changes in the stopping
power.

Furthermore, we note that the resuits presented here are also of much interest for
possible applications to inertial confinement fusion (ICF) research. Experiments so far
have been made using energetic light and heavy ion beams. The application of the
cluster-impact technique, with ion clusters of various sizes and energies, may constitute
an alternative line of interest for ICF research.

Finally, we briefly mention further extensions of this work. A detailed study of the
stopping of large hydrogen clusters in carbon and aluminium targets, at high velocities
(v > vg)isunder way [17, 18]. Different models are employed for the dielectric function
describing the target, and the effects of cluster structure, quantified by the pair cor-
relation function, are investigated in detail. A general approach to analyse multiple
scattering effects on the vicinage function of a slow cluster have aiso been studied
recently [19] using a scattering formalism like in the work of Nagy ezal{20]. Animportant
issue that has only been touched upon in the present work, however, is the effect on the
stopping of existing bound electrons in the cluster constituents. The use of an effective
charge, like in section 4 is not well justified for accurate predictions of cluster stopping,
especially at low velocities.
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